技術(shù)支持
技術(shù)支持產(chǎn)品描述
用于機(jī)器視覺的周邊產(chǎn)品包括圖像采集卡、濾光片、光虎視覺軟件、嵌入式計算機(jī)等。
型號
描述
景深
景深景深是光學(xué)攝影中一個很重要的參數(shù),它是指光學(xué)系統(tǒng)獲取清晰成像時,被測物體所能移動的距離范圍。當(dāng)一個光學(xué)系統(tǒng)的景深較小時,就會出現(xiàn)背景虛化的現(xiàn)象。光圈、焦距、工作距離都是影響景深的重要因素。在對光學(xué)系統(tǒng)的景深進(jìn)行計算時,需要先了解容許彌散圓的概念。彌散圓是指在焦點(diǎn)前后,光線開始聚集和擴(kuò)散,點(diǎn)的影像變成模糊時所形成的一個擴(kuò)大的圓。如果彌散圓的直徑足夠小,成像會足夠清晰;如果彌散圓再大些,成像就會顯得模糊。中間的臨界點(diǎn),這個可以被接受的最大的直徑被稱為容許彌散圓直徑。在拍攝過程中,通過彌散圓判斷圖像是否銳利進(jìn)而判斷景深的深淺。下圖為兩款不同雙遠(yuǎn)心鏡頭利用景深板拍攝的測量景深的圖片。其中圖二為型號光虎視覺TTL11.5-25-45C雙遠(yuǎn)心鏡頭在平行光照射下拍攝的圖片。圖一圖二實(shí)際應(yīng)用中,景深可分為前景深和后景深,計算公式如下:景深(dof)=圖三根據(jù)景深公式我們可以看出,景深與有效F數(shù)、焦距、工作距離都有關(guān)系。圖四是利用光線追跡的方法解釋景深與F數(shù)的關(guān)系。增大F數(shù)之后,相同工作距離下,光線入射角變小,在容許彌散圓大小不變的情況下,使得景深變大。即有效F數(shù)與景深正相關(guān)。圖五給出了在焦距、拍攝距離固定的情況下,不同F(xiàn)數(shù)下的拍攝效果圖。當(dāng)F數(shù)較小時,景深較小,從圖片中可以明顯的看出背景已經(jīng)虛化。隨著F數(shù)的增加,背景虛化現(xiàn)象明顯變小,甚至消失。圖四圖五圖六給出了有效F數(shù)與景深之間的關(guān)系圖。有效F數(shù)越小,光圈越大,景深越??;有效F數(shù)越大,光圈越小,景深越大。圖六此外,通過景深公式,我們還可以推算出:若鏡頭焦距可變,光圈和工作距離確定時,焦距越大,景深越??;焦距越小,景深越大。當(dāng)鏡頭焦距、F數(shù)確定時,工作距離越大,景深越大;工作距離越小,景深也會隨之減小,容易出現(xiàn)背景虛化現(xiàn)象。而雙遠(yuǎn)心鏡頭與FA鏡頭略有不同。在雙遠(yuǎn)心鏡頭的使用過程中,使用者可以微調(diào)鏡頭與相機(jī)傳感器之間的距離,即法蘭距,從而獲得想要的景深效果。當(dāng)然景深的極限還是由雙遠(yuǎn)心鏡頭本身的設(shè)計決定,這些調(diào)整只能在設(shè)計的景深極限范圍內(nèi)進(jìn)行微調(diào)。需注意的一點(diǎn)是,景深是一個相對的概念,在景深之內(nèi)和景深之外,并不存在絕對的清晰或者模糊的界限。景深的測量也具有一定的主觀性,需要使用者根據(jù)自己的具體需求進(jìn)行調(diào)整?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
曝光時間對成像質(zhì)量的影響
曝光時間對成像質(zhì)量的影響在任何工業(yè)相機(jī)應(yīng)用中,相機(jī)的曝光時間是設(shè)置的關(guān)鍵。在任意的情況下,由于我們拍攝物體的移動,生成的圖像可能會模糊。為了最大程度的優(yōu)化圖像質(zhì)量,可以計算最小曝光時間來消除模糊并最大化拍攝亮度。在這篇文章中,將幫助了解曝光時間對圖像質(zhì)量的影響并避免它。什么是曝光時間曝光時間或快門速度是讓光線落在圖像傳感器上的時間。曝光時間越長,就越能“曝光”傳感器為像素充電以使其更亮。快門速度通常以幾分之一秒的形式給出,例如攝影相機(jī)中的 1/60、1/125、1/1000秒。在工業(yè)相機(jī)中,曝光時間通常以毫秒為單位,只是快門速度的倒數(shù)。(即1/60秒=0.0166秒或16毫秒)。圖像模糊模糊是當(dāng)物體相對于傳感器移動并在曝光時間內(nèi)移動跨越2個或更多像素時所得到的。當(dāng)拍攝移動速度超過在曝光時間內(nèi)可以完全靜止運(yùn)動的物體時,就會看到這一現(xiàn)象。在左邊的圖像中,可以清晰的拍到運(yùn)動員,但是球移動得非常快,導(dǎo)致看起來很模糊。本例中的曝光時間為 1/500 秒(2 毫秒),但在此曝光期間球移動了許多像素??扉T速度越快,物體相對于它開始的位置移動的可能性就越小。在機(jī)器視覺中,相機(jī)絕大多數(shù)情況下是固定的,所以它們不會移動,但擔(dān)心的是物體在曝光時間內(nèi)移動所產(chǎn)生的影響。根據(jù)應(yīng)用場景的不同,圖像處理可能對模糊敏感,也可能不敏感。例如,假設(shè)相機(jī)橫向上的分辨率為2448像素,而傳感器上的呈現(xiàn)出來的物體為1000像素。在曝光期間,被拍攝的物體移動1個像素,則在傳感器上呈現(xiàn)出來的圖像就整體偏移了1個像素,這就是“像素模糊”??扉T速度越快,物體相對于它開始的位置移動的可能性就越小。在機(jī)器視覺中,相機(jī)絕大多數(shù)情況下是固定的,所以它們不會移動,但擔(dān)心的是物體在曝光時間內(nèi)移動所產(chǎn)生的影響。根據(jù)應(yīng)用場景的不同,圖像處理可能對模糊敏感,也可能不敏感。例如,假設(shè)相機(jī)橫向上的分辨率為2448像素,而傳感器上的呈現(xiàn)出來的物體為1000像素。在曝光期間,被拍攝的物體移動1個像素,則在傳感器上呈現(xiàn)出來的圖像就整體偏移了1個像素,這就是“像素模糊”。如何計算最合適的曝光時間在大多數(shù)情況下,都需要沒有像素模糊的清晰圖像。要計算合適的曝光時間,需要注意以下幾點(diǎn):l 以像素為單位的相機(jī)分辨率(沿行進(jìn)方向)l 視野(FOV)l 物體的速度l 曝光時間然后,就可以使用以下公式計算對象在曝光期間將移動多少像素:B = Vp * Te * Np / FOVB = 以像素為單位的模糊Vp = 物體的速度FOV = 運(yùn)動方向的視野Te = 曝光時間(以秒為單位)Np = 跨越視野的像素數(shù)光虎視覺認(rèn)為,在大多數(shù)情況下,產(chǎn)生超過1個像素的拖影時,模糊就會成為一個問題。在精密測量中,即使是1個像素的模糊也可能太多,需要使用更快的曝光時間?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
平場校正技術(shù)
平場校正技術(shù)什么是平場校正?平場校正是一種用于提高數(shù)字成像質(zhì)量的技術(shù),它消除了由傳感器的像素對像素靈敏度變化和光路失真而導(dǎo)致的圖像偽像效果,通常用于像素與像素敏感度以及暗電流變化相關(guān)的校正。圖為Alkeria Necta 線掃相機(jī)所演示的平場校正什么時候會用到平場校正?由于自然制造公差,每個傳感器的亮度輸出都有一定程度的不均勻性,每個像素對相同數(shù)量的光的反應(yīng)可能不同。使用面陣相機(jī)時,圖像中亮度的差異不會產(chǎn)生太大的影響,因?yàn)檎麄€圖像中出現(xiàn)的差異很小。整體圖像幾乎不受影響,通常對于大多數(shù)應(yīng)用程序來說已經(jīng)足夠了。但是,當(dāng)使用線掃相機(jī)時,線掃相機(jī)的傳感器高度只有幾個像素,這意味著任何像素產(chǎn)生的錯誤將在同一位置的每次刷新中重復(fù)。例如,產(chǎn)生的圖像錯誤可能會以垂直條紋的形式發(fā)生,會對記錄的圖像數(shù)據(jù)產(chǎn)生重大影響。如何平場校正?圖像的誤差可以通過兩個步驟來進(jìn)行校正:暗信號非均勻性(DSNU)校正和光響應(yīng)非均勻性(PRNU)校正。要校準(zhǔn) DSNU,必須在黑暗中記錄參考圖像,而對于 PRNU,必須用均勻的照明記錄參考圖像。因此,平場校正中的這兩個單獨(dú)的步驟分別稱為暗場校正和亮場校正。平場校正的第一步:低暗噪聲校正,用于盡可能降低暗信號非均勻性(也稱為偏移噪聲或固定模式噪聲)。因此,暗場和亮場校正都是校正 DSNU 和 PRNU 的平場校正的一部分。暗場校正是最容易校準(zhǔn)的。它只需要在圖像傳感器上不帶照明的情況下記錄參考圖像。為此,需要遮蓋住鏡頭。然后,使用偏移量對所有像素值進(jìn)行標(biāo)準(zhǔn)化,就可以補(bǔ)償傳感器芯片的不均勻性。在第二步,即光響應(yīng)非均勻性(PRNU)校正(也稱為低頻平場校正),由于它糾正的低頻變化,通常由光路失真引起,而不是由于像素到像素在照片響應(yīng)中的變化,因此校準(zhǔn)低頻校正的實(shí)際光強(qiáng)就不那么重要了,(通常來說保持在12.5%到90%之間的適當(dāng)值即可)。使用模擬增益用于在均勻的照明條件下獲取所有像素的一定目標(biāo)值。由此來消除邊緣的強(qiáng)度下降,圖像顯示整個寬度下的均勻亮度。平場校正優(yōu)點(diǎn)及應(yīng)用行業(yè)在平場校正后,線掃圖像沒有條紋和陰影,這就使得圖像分析更容易、更方便、更可靠,不需要使用軟件執(zhí)行任何后續(xù)的校正。通常用于對光較為敏感,即非常依靠光來進(jìn)行下一步判斷的線掃應(yīng)用,如半導(dǎo)體行業(yè)、醫(yī)療行業(yè)、包裝行業(yè)等。
光學(xué)基礎(chǔ)概念之F-Number
在鏡頭行業(yè)里,一般不常使用相對孔徑的概念,而是使用相對孔徑的倒數(shù),稱之為F數(shù),也叫光圈數(shù)。記作F/-。例如,F(xiàn)/5.6表示F數(shù)等于5.6。即相對孔徑的倒數(shù)為5.6,它表示鏡頭的焦距等于光圈直徑的5.6倍。顯然,像面接收到的光強(qiáng)反比于F數(shù)的平方。即 F數(shù)又稱為鏡頭速度,F(xiàn)數(shù)小的鏡頭速度快。因?yàn)榕臄z的曝光時間△t 正比于F數(shù)的平方。一、F數(shù)與分辨率的關(guān)系 F數(shù)能表征鏡頭的分辨率,F(xiàn)數(shù)越小,能分辨兩點(diǎn)間的距離越小,即分辨率越高。因?yàn)閳A孔最小衍射角為: 所以,像面上能夠分辨得開的兩點(diǎn)間的最小距離可以計算得到: 二、F數(shù)與光圈的關(guān)系 F數(shù)和光圈是一個反比關(guān)系。即F值越小,光圈越大。F值越大,光圈越?。籉值越小,光圈越大。例如F1.8比F2.8光圈要大,光圈越大進(jìn)光亮越多,光圈小相反,光圈大背景越虛化(如圖1),光圈小背景越清(如圖2)。 圖1. 大光圈成像 圖2. 小光圈成像 三、F數(shù)與景深的關(guān)系 通常我們說,光圈越大,景深越淺;光圈越小,景深越深。那么為什么光圈越大,景深越淺;光圈越小,景深越深呢?首先在了解光圈與景深的關(guān)系之前,我們先介紹兩個概念。光線射入透鏡匯聚成一點(diǎn),在數(shù)學(xué)上,這個點(diǎn)我們稱之為焦點(diǎn)。但是在焦點(diǎn)前后形成的光線的聚集和擴(kuò)散,會產(chǎn)生一個擴(kuò)大的圓,這個圓就是允許彌散圓,彌散圓仍然足夠清晰呈現(xiàn)物體,通常我們認(rèn)為這是“合焦”。因此,我們通常用允許彌散圈來作為成像清晰和成像模糊的界限。焦深:兩個允許彌散圈的距離我們稱之為焦深。景深的大小與焦深有著密切的聯(lián)系(如圖3.成像光路圖)。前焦深對應(yīng)著前景深,后焦深對應(yīng)著后景深。所以,要知道光圈與景深的關(guān)系,必須先了解光圈與彌散圈之間的關(guān)系。 彌散圈的取決于光的波長和光圈直徑。 彌散圈直徑= 其中λ是光的波長,f是焦距,N是光圈直徑,一般的f/N即是光圈系數(shù)F值。所以,光圈越大,彌散圈直徑越?。还馊υ叫?,彌散圈直徑越大,即f數(shù)越大,景深越大;f數(shù)越小,景深越小。 如光虎視覺TTL11.5-65遠(yuǎn)心系列 TTL11.5-O5-65C鏡頭其有效F數(shù)為9景深為2.88mm,物方分辨率為12.08μm 滿足需要大視野高景深的客戶的需求,如對分辨率有更高的要求就需要選擇小景深大F數(shù)鏡頭如TTL11.5-20-65C此鏡頭的放大倍率為2,其F數(shù)為13,景深為0.26其分辨率可達(dá)4.362μm,此系列鏡頭均滿足低畸變,高遠(yuǎn)心。
遠(yuǎn)心鏡頭如何進(jìn)行參數(shù)選型
遠(yuǎn)心鏡頭如何進(jìn)行參數(shù)選型 遠(yuǎn)心鏡頭有兩種類型的遠(yuǎn)心度:物方和像方遠(yuǎn)心度(分別指入射光瞳和出射光瞳位置)。所以,遠(yuǎn)心鏡頭分為:物方遠(yuǎn)心鏡頭,像方遠(yuǎn)心鏡頭、雙遠(yuǎn)心鏡頭。那么需求和合適的鏡頭相匹配就成為了一個重要的問題,也就是說我們該如何通過我們的需求來匹配到合適的鏡頭。一、影響選型的參數(shù) 那么在我們選擇遠(yuǎn)心鏡頭時,首先應(yīng)明白在什么時候需要時選擇遠(yuǎn)心鏡頭。根據(jù)遠(yuǎn)心鏡頭原理特征及獨(dú)特優(yōu)勢 當(dāng)檢查物體遇到以下6種情況時,最好選用遠(yuǎn)心鏡頭: 1)當(dāng)需要檢測有厚度的物體時(厚度>1/10 FOV直徑); 2)需要檢測不在同一平面的物體時; 3)當(dāng)不清楚物體到鏡頭的距離究竟是多少時; 4)當(dāng)需要檢測帶孔徑、三維的物體時; 5)當(dāng)需要低畸變、圖像效果亮度幾乎完全一致時; 6)當(dāng)缺陷只在同一方向平行照明下才能檢測到時。其次選擇遠(yuǎn)心鏡頭,要明白遠(yuǎn)心鏡頭相關(guān)指標(biāo)對應(yīng)的使用條件: 1)物方尺寸:拍攝范圍。 2)像方尺寸:使用的CCD的靶面大小??紤]鏡頭像面和相機(jī)芯片的匹配,對于遠(yuǎn)心鏡頭來說一般像面越大價格越高,所以我們在選擇時盡量考慮相機(jī)芯片規(guī)格和鏡頭像面規(guī)格一致的配合,如果鏡頭的像面直徑大于相機(jī)芯片的對角線,那對鏡頭來說會產(chǎn)生成本浪費(fèi),和視野損失,如果鏡頭像面直徑小于相機(jī)芯片的對角線,那么最后的成像就會有暗角、黑角的問題。 3)工作距離:物方鏡頭前表面距離拍攝物的距離。 4)分辨率:使用的CCD像素大小。 5)景深:鏡頭能成清晰像的范圍。像/物倍率越大景深越小。 6)接口:遠(yuǎn)心鏡頭主要圍繞工業(yè)相機(jī)做匹配設(shè)計的,鏡頭和相機(jī)的接口一般也是常規(guī)的標(biāo)準(zhǔn)接口:C接口、F接口、M42接口、M58接口等。這些接口是鏡頭和相機(jī)它連接在一起的物理標(biāo)準(zhǔn),它不光對應(yīng)了不同規(guī)格尺寸的卡口或螺紋對應(yīng)尺寸,它還對應(yīng)了標(biāo)準(zhǔn)的法蘭距(相機(jī)接口端面到芯片之間的距離),一般1.2英寸極其以下靶面芯片的工業(yè)相機(jī)以C接口為主。 7)放大倍率:光學(xué)放大倍率=CCD相機(jī)元素尺寸/視場實(shí)際尺寸 =CCD(V)或(H)尺寸/視場(V)或(H)尺寸根據(jù)使用情況(物體尺寸和需要的分辨率)選擇物方尺寸合適的物方鏡頭和CCD或CMOS相機(jī),同時得到像方尺寸,即可計算出放大倍率,然后根據(jù)產(chǎn)品列表選擇合適的像方鏡頭。選擇過程中還應(yīng)注意景深指標(biāo)的影響,因?yàn)橄?物倍率越大景深越小,為了得到合適的景深,可能還需要重新選擇鏡頭。 8)畸變:遠(yuǎn)心鏡頭通過嚴(yán)格的加工制造和質(zhì)量檢驗(yàn),將此誤差嚴(yán)格控制在0.1%以下甚至無畸變。二、鏡頭選型的參數(shù)計算 1、分辨率相機(jī)的傳感器sensor是有許多像素點(diǎn)按照矩陣的形式排列而成,分辨率就是以水平方向和垂直方向的像素來表示的。分辨率越高,成像后的圖像像素數(shù)就越高,圖像就越清晰。常用的工業(yè)面陣相機(jī)分辨率有130萬、200萬、500萬等;對于線陣相機(jī)而言,分辨率就是傳感器水平方向上的像素數(shù),常見有1K、2K、6K等。 在相機(jī)分辨率的選型上,要根據(jù)我們的項(xiàng)目需求而定,并不一定是分辨率越高就越好,分辨率高帶來的圖像數(shù)據(jù)量就大,后期的算法處理復(fù)雜度就高,而且一般分辨率大的相機(jī),幀率一般都不會太高。 2、傳感器尺寸傳感器尺寸是以有效面積(寬x高)或以對角線大?。ㄓ⒋纾﹣肀硎镜?,常見的傳感器尺寸如下:圖1. 傳感器尺寸傳感器尺寸越大,一定程度上表示相機(jī)可容納像素個數(shù)越多,成像的畫幅越大。3、遠(yuǎn)心度(ecentricity)不同廠家的遠(yuǎn)心鏡頭消除透視誤差的能力也有差異,這是因?yàn)檫h(yuǎn)心度不同。遠(yuǎn)心度定義為主光線與光軸間的夾角θ,如圖所示。圖2. 遠(yuǎn)心度測量假設(shè)物體高低差d=2mm, 鏡頭遠(yuǎn)心度θ=0.05°,則物體位置偏移量=2mm*tan0.05°=1.7µm. 若選用普通鏡頭θ=15°,則物體位置偏移量=2mm*tan15°=535.9µm。因此對于非平面物體的測量應(yīng)用,只有選用遠(yuǎn)心度高的遠(yuǎn)心鏡頭,才能很好的消除透視誤差,從而減小測量誤差。 4、景深景深,在光學(xué)攝影中是一個很重要參數(shù),它的大小決定著清晰圖像范圍。在遠(yuǎn)心光學(xué)成像中,景深也是一個經(jīng)常被提及的參數(shù),它的大小取決于鏡頭倍率、光圈數(shù)、波長、像素大小、客戶使用的邊緣提取算法靈敏度。景深可用于測量應(yīng)用,它通常比缺陷檢測景深要大,圖像的對比度必須盡可能高。景深非常困難用參數(shù)來定義:它取決于倍率、光圈數(shù)、波長、像素大小、客戶使用的邊緣提取算法的靈敏度。由于這個原因:沒有客觀的,也沒有標(biāo)準(zhǔn)的方式來定義它:這是一個主觀參數(shù)。景深=(工作光圈數(shù)*像素大小*應(yīng)用程序特定參數(shù))/(放大倍率*放大倍率)。
光輻射的危害及其防治
光輻射的危害及其防治 什么是光輻射 一般按輻射波長及人眼的生理視覺效應(yīng)將光輻射分成三部分:紫外輻射、可見光和紅外輻射。以電磁波形式或粒子(光子)形式傳播的能量,它們可以用光學(xué)元件反射、成像或色散,這種能量及其傳播過程稱為光輻射。 光輻射的危害 近年來的光生物學(xué)研究表明,光輻射與人類健康息息相關(guān),不管是紫外光、可見光、紅外光,在照射適當(dāng)?shù)那闆r下,都能對人體的生理產(chǎn)生積極的影響。然而,在照射不足或者照射過度的情況下,光輻射帶來的影響要么是可以忽略的,要么就存在潛在危害。 紫外危害 紫外輻射是指波長范圍在100nm—400nm的光輻射,一般把100nm—280nm稱作UVC,把280nm—315nm稱作UVB,把315nm—400nm稱作UVA。其中100nm—200nm的紫外輻射被大氣吸收,對人類沒有影響,被稱為真空紫外,因此對人類有影響主要是200nm—400nm的紫外輻射。 研究表明,紫外線的有害效應(yīng)主要是由于紫外線對脫氧核糖核酸(DNA)的作用造成的。最有害的效應(yīng)是細(xì)胞致死,其它的效應(yīng)則包括致突、致癌、干擾DNA、核糖核酸(RNA)和蛋白質(zhì)的合成、細(xì)胞分裂的延遲、以及在通透性和能動性上的變化等。 就目前所知,紫外線對人體的有益效應(yīng)極少(如促進(jìn)人的皮膚中產(chǎn)生維生素D),但是紫外線能夠造成的危害卻很多。紫外線對眼睛的危害主要有:光致角膜炎、光致結(jié)膜炎、白內(nèi)障等。紫外線對面皮膚的危害主要有:紅斑(短期效應(yīng))、皮膚癌(長期效應(yīng))。 藍(lán)光危害 隨著時間推移,脂褐質(zhì)在視網(wǎng)膜色素上皮細(xì)胞的積聚將使視網(wǎng)膜更容易受到長時間光照的損傷。研究表明,對由于遺傳、營養(yǎng)、環(huán)境、習(xí)慣、年齡等因素而有上述視網(wǎng)膜斑點(diǎn)問題的人群,藍(lán)光特別有害。盡管波長較短的UVA和UVB被角膜和晶狀體吸收,但是研究發(fā)現(xiàn),紫外到藍(lán)光波段的光輻射都能造成此類危害。 可見與紅外危害 電磁波可見部分的波長范圍約在380nm到780nm之間,在這個范圍內(nèi)的各種波長,都可憑眼睛的顏色感覺來加以區(qū)別。藍(lán)色和紫色屬于短波,紅色屬于長波,黃色和綠色處于可見波長范圍的中間,也是人眼最敏感的區(qū)域??梢姽獾淖钪匾男?yīng)就是我們的視覺,視覺是將光能轉(zhuǎn)化為電能或者神經(jīng)沖動的過程,它的光化學(xué)反應(yīng)就是光物理與光異構(gòu)化作用。視覺是人類最重要的知覺功能,人類接收的外界信息中的百分之八十到九十來自視覺,可見光使我們能夠感覺、認(rèn)識、記憶這個世界,使我們能夠維持我們的方位??梢娕c紅外部分的光輻射危害主要有:灼傷、紅斑效應(yīng)、白內(nèi)障等。 此外高強(qiáng)度的光源光輻射也能對人體造成損傷,如直視激光會引起黃斑燒傷,會造成不能恢復(fù)的視力減退,這種傷害是生理性的,往往不能修復(fù)。 光輻射危害的防治 起初為了防止激光對人體產(chǎn)生危害,建立了IEC/EN 60825激光安全標(biāo)準(zhǔn),將激光安全等級分為6類安全等級。如今各種光源越來越普及,為了保護(hù)人們免受光輻射造成的傷害和失明,人們制定了IEC/EN 62471標(biāo)準(zhǔn),目的是為了評估與不同燈和燈系統(tǒng)相關(guān)的光輻射危害,并全面取代IEC/EN 60825標(biāo)準(zhǔn)中關(guān)于LED產(chǎn)品能量等級的要求,增加了光生物方面的要求,其中包括輻射強(qiáng)度、輻射亮度等并根據(jù)測試數(shù)據(jù)對產(chǎn)品進(jìn)行危害分級。例如美國Smar Vision Lights遵守IEC/EN 62471標(biāo)準(zhǔn)生產(chǎn)的光源,在保證多波長的基礎(chǔ)上(365nm、395nm、470nm、505nm、530nm、625nm、850nm、940nm及白光),可確保光源產(chǎn)生的光輻射對人體無危害。 根據(jù)EN 62471:2008規(guī)定,按照光輻射來源的潛在光生物學(xué)危害性,將光輻射來源劃分為不同風(fēng)險組。分組是通過風(fēng)險評估來實(shí)現(xiàn)的,而風(fēng)險評估是根據(jù)從制造商獲得的信息對單個部件或成品進(jìn)行的。若光輻射來源被劃分到“安全”組或“低風(fēng)險”組,則不需要對工作場所進(jìn)行詳細(xì)評估,因?yàn)椴⒉淮嬖诠馍飳W(xué)安全隱患問題。按照危害性,根據(jù)放射限制以及危害超標(biāo)前的允許接觸時長,將光輻射來源劃分為以下四組: 風(fēng)險組判斷基礎(chǔ)安全組無光生物學(xué)危害 低風(fēng)險組正常操作情況下無光生物學(xué)危害 中風(fēng)險組由于對強(qiáng)光或熱度不適有保護(hù)性反應(yīng),不會造成危害 高風(fēng)險組即使是短暫接觸也有危險 >>光虎光電科技(天津)有限公司<< >>公司網(wǎng)址:www.sc2starcraft.cn<<
光度立體技術(shù)及其應(yīng)用
光度立體技術(shù)及其應(yīng)用隨著計算機(jī)視覺理論的逐漸成熟,從圖像中獲取物體表面的三維信息的算法己經(jīng)達(dá)到了實(shí)際應(yīng)用的階段。立體視覺技術(shù)、Shape From X技術(shù)、光度立體技術(shù)(Photometric Stereo)等一系列圖形算法可以自動從單幅或多幅真實(shí)物體照片中提取出其三維結(jié)構(gòu)的信息,而這些技術(shù)實(shí)施簡便,設(shè)備易于獲取,核心部件僅需一臺數(shù)碼相機(jī)即可。所以,通過應(yīng)用計算機(jī)視覺理論,從真實(shí)物體的照片中重建物體的三維結(jié)構(gòu)的技術(shù)是目前得到真實(shí)物體3D模型的比較廉價的手段。光度立體法光度立體法是SFS(Shape From Shading)陰影恢復(fù)形狀方法的一個分支,與SFS不同的是,光度立體法使用多幅圖像來還原物體表面的三維結(jié)構(gòu),它要求物體和攝像機(jī)的相對位置不變,然后使用不同方向的光源照射物體,從而產(chǎn)生不同的明暗效果。由于有多幅不同的光源下的圖像,計算物體表面的向量場就相對容易了許多,而且不受物體表面反射系數(shù)的影響。光度立體技術(shù)的優(yōu)點(diǎn)測量任何給定像素的高度不是光度立體技術(shù)的主要考慮因素。相反,該技術(shù)通過使用3D表面取向及其對反射光的影響產(chǎn)生對比度圖像,突出局部3D表面變化。使用傳統(tǒng)的2D成像時,顯示的變化可能是不可見的。當(dāng)使用光度立體技術(shù)時,不需要知道測試對象和相機(jī)之間的精確3D關(guān)系,也不必使用兩個相機(jī)來捕獲3D數(shù)據(jù)。而是使用具有多個照明源的單個相機(jī)系統(tǒng)。通過在不同光照條件下觀察物體,計算其表面。該方法是利用表面相對于光源,從傳感器觀察到的表面反射的光量來進(jìn)行計算的。由于光度立體算法的出現(xiàn),人們越來越意識到良好的照明以及低成本的多光解決方案是機(jī)器視覺成功的關(guān)鍵,例如Smart Vision Lights的LED燈管理器(LLM)(允許通過以下方式控制四個燈)基于瀏覽器的簡單界面,成本低于幀抓取器或智能相機(jī)分線盒,光度立體學(xué)在工業(yè)中的應(yīng)用越來越受到關(guān)注,其獨(dú)特優(yōu)點(diǎn)使得許多以前難以或不可能解決的常見工業(yè)檢測應(yīng)用成為可能。 光度立體技術(shù)的應(yīng)用輪胎和夾子例如,無論零件是卡車輪胎還是汽車夾,在零件上讀取凸起的字母對于機(jī)器視覺系統(tǒng)來說總是有問題的。在這個例子中,塑料連接器表面具有多種特征,以及數(shù)字"2"和方向符號。從組成圖像中可以看到,包含剪輯的材料和凸起的字母之間沒有區(qū)別,因此沒有對比度。在較大的物體(如輪胎)上,通常使用激光三角測量系統(tǒng)創(chuàng)建 3D 曲面圖。用于 3D 測量的激光掃描系統(tǒng)已變得更加集成和有效,但仍是成本高昂的解決方案,并且通常要求對象在檢查過程中移動,從而增加了自動化解決方案的成本和復(fù)雜性。在這些照片中,黑色塑料夾由位于輪胎周邊 90 度、180 度、270 度和 360 度的線性微型 (LM) LED 燈照亮,并由 LED 燈管理器 (LLM) 控制。當(dāng)相機(jī)觸發(fā)每次曝光時,LLM 會從不同的方向觸發(fā)光線。相機(jī)將每個圖像導(dǎo)入帶有光度立體算法的 PC 中,該算法從每個圖像中獲得最佳像素,并將它們組合成一個合成圖。(圖片由Matrox Imaging提供)合成皮革穿孔在這個例子中,顯示了四張合成皮革材料的圖片。人造革,與其模仿的有機(jī)材料類似,具有相當(dāng)大的表面紋理。人眼幾乎不可能在整個圖像上可視化100%的表面紋理。
【視覺知識】液態(tài)鏡頭技術(shù)
液態(tài)鏡頭技術(shù)液態(tài)鏡頭是在工業(yè)領(lǐng)域迅速普及的一項(xiàng)新技術(shù),在多種應(yīng)用中它們比傳統(tǒng)鏡頭具有許多優(yōu)勢。實(shí)際上,正是它們的多功能性和靈活性成為成功采用它們的主要動力。但是什么是液態(tài)鏡頭技術(shù)?它是如何工作的?它的作用是什么?液態(tài)鏡頭用于卓越的自動對焦對于數(shù)字圖片,精確控制焦點(diǎn)是獲得高質(zhì)量圖像的唯一方法。圖像的主體必須非常清晰,而背景的其余部分則更加模糊。自動對焦功能是拍攝優(yōu)質(zhì)照片的核心,而液態(tài)鏡頭為自動對焦帶來了全新的功能。液態(tài)鏡頭可用于多種應(yīng)用,例如:l 數(shù)碼攝影l(fā) 工業(yè)數(shù)據(jù)采集l 條形碼讀?。ㄒ痪S和二維)l 生物特征數(shù)據(jù)采集本質(zhì)上,液態(tài)鏡頭可用于物距變化很大,需要快速自動對焦的任何應(yīng)用。液態(tài)鏡頭如何工作?液態(tài)鏡頭采用電潤濕工藝來實(shí)現(xiàn)卓越的自動聚焦功能。透鏡本身是一個內(nèi)部裝有水和油的密封電池。電潤濕過程可將油滴快速準(zhǔn)確地塑造成有效的鏡片。該過程是連續(xù)的,可逆的,并且對于大小聚焦步驟都同樣快速。液態(tài)鏡頭改變其形狀的速度似乎很神奇,但實(shí)際上是非??茖W(xué)的。如果將一滴液體放置在疏水表面(排斥液體的表面)上,則液體中的分子將結(jié)合在一起并形成珠子,因?yàn)樗鼈儽槐砻娴氖杷运懦?。?dāng)向該液體和疏水性阻擋層另一側(cè)的另一種導(dǎo)電材料(如鋁)施加電場時,液體會靜電吸附到鋁上。組成液體的分子在試圖到達(dá)鋁時會散開,導(dǎo)致水滴急劇改變形狀。此過程稱為電潤濕,它是液態(tài)鏡頭的重要基礎(chǔ)。施加的電場越強(qiáng),液體對導(dǎo)電材料的吸引力就越大。這意味著水將盡其所能地越過障礙物傳播到更遠(yuǎn)的范圍,從而進(jìn)一步擴(kuò)散。通過改變用電量,可以迫使液體采取多種形狀。如果將這種液體用作透鏡,則其變成不同形狀時將具有不同的焦距,從而可以大大改變傳感器拍攝的圖像。為什么要使用液態(tài)鏡頭技術(shù)?液態(tài)鏡頭的主要優(yōu)點(diǎn)是其靈活性,可以同時用于多種不同的應(yīng)用。這在不同尺寸物體的大批量生產(chǎn)環(huán)境中尤其有用。例如,一家制藥公司可能對不同類型的膠囊、藥丸、凝膠片等使用機(jī)器視覺檢查。對于傳統(tǒng)的鏡頭,將需要設(shè)置多個圖像系統(tǒng)來檢查每種產(chǎn)品,或者一個圖像系統(tǒng)必須焦點(diǎn)深度不斷變化。使用液態(tài)鏡頭,一個圖像系統(tǒng)可以完成多個圖像系統(tǒng)的工作,可以在圖像系統(tǒng)中編程不同的物距,從而無需停止生產(chǎn)來更改焦深或設(shè)置多個不同的圖像系統(tǒng)。液態(tài)鏡頭技術(shù)在很大程度上得益于其提供的靈活性,在工業(yè)領(lǐng)域已迅速普及。液體透鏡非常適合廣泛的應(yīng)用,甚至可以提供比許多機(jī)械選件更高的圖像質(zhì)量?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
圖像畸變的產(chǎn)生及消除畸變的方法
圖像畸變的產(chǎn)生及消除畸變的方法什么是圖像畸變?畸變作為光學(xué)系統(tǒng)中經(jīng)常提到的一個參數(shù),是限制光學(xué)量測準(zhǔn)確性的重要因素之一。它是光學(xué)系統(tǒng)對物體所成的像相對于物體本身而言的失真程度,只引起像的變形,對像的清晰度并無影響。對于理想光學(xué)系統(tǒng),在一對共軛的物像平面上,放大率是常數(shù)。但是對于實(shí)際的光學(xué)系統(tǒng),僅當(dāng)視場較小時具有這一性質(zhì),而當(dāng)視場較大或很大時,像的放大率就要隨視場而異,這樣就會使像相對于物體失去相似性。這種使像變形的成像缺陷稱為畸變?;兌x為實(shí)際像高與理想像高差,而在實(shí)際應(yīng)用中經(jīng)常將其與理想像高之比的百分?jǐn)?shù)來表示畸變,稱為相對畸變,即常見的畸變類型桶形畸變:在桶形畸變中,圖像放大率隨與光軸的距離而減小,體現(xiàn)在圖像呈球體(或桶)周圍映射的效果。魚眼鏡頭具有半球形的視角,它利用這種變形來將無限寬的物平面映射到有限的圖像區(qū)域。在變焦鏡頭中,桶形畸變出現(xiàn)在鏡頭焦距范圍的中間,而在該范圍的廣角端最嚴(yán)重。枕形畸變:在枕形畸變中,圖像放大率隨距光軸距離的增加而增加。可見的效果是,未穿過圖像中心的線像枕形一樣向內(nèi)彎曲,朝向圖像中心。機(jī)器視覺中的圖像畸變圖像畸變帶來的影響光虎視覺認(rèn)為許多檢測應(yīng)用需要非常精確的測量,盡管通過亞像素插值的軟件算法可以提供非常精細(xì)的測量結(jié)果,但是如果創(chuàng)建的圖像有任何變形,它們也無法提供準(zhǔn)確或可重復(fù)的結(jié)果。所以,選擇合適的光學(xué)器件是測量系統(tǒng)能否成功的關(guān)鍵。幸運(yùn)的是,運(yùn)用一些光學(xué)原理,可以使用雙遠(yuǎn)心鏡頭,該類鏡頭可以克服物體位置的變化、物體上的高度差以及其他可能導(dǎo)致軟件處理不正確的圖像信息的問題。所以合理使用雙遠(yuǎn)心鏡頭可以很好的解決圖像的畸變問題。遠(yuǎn)心的重要性透視誤差,也稱為視差,是我們?nèi)粘sw驗(yàn)的一部分。實(shí)際上,視差是使得大腦解釋3D世界的原因。距離我們較近的物體看起來相對較大,舉個簡單的例子:想象某人站在一組鐵軌,緊挨著它們的前面,兩根鐵軌相距不遠(yuǎn),看似平行。當(dāng)朝地平線看去時,這些平行的軌道似乎會聚在一起。我們知道它們實(shí)際上并沒有在遠(yuǎn)處的某個地方聚集在一起,否則火車會飛離軌道,但是這種感知方式至關(guān)重要。在常規(guī)成像系統(tǒng)中也存在該現(xiàn)象,其中物體的感知尺寸(其放大率)隨著其距透鏡的距離而變化。雙遠(yuǎn)心鏡頭在光學(xué)上可以糾正這種情況,因此在鏡頭所定義的范圍內(nèi),無論距離如何,物體都保持相同的感知大小。在鐵軌的示例中,雙遠(yuǎn)心鏡頭會使鐵軌看起來相距相同的距離,而不管它們是在鏡頭的前面還是在地平線上。雙遠(yuǎn)心鏡頭的優(yōu)勢光虎視覺認(rèn)為對于許多應(yīng)用,都需要雙遠(yuǎn)心,因?yàn)樗谝欢ǖ墓ぷ骶嚯x范圍內(nèi)提供近乎恒定的放大倍率,實(shí)際上消除了視角誤差。這意味著對象移動不會影響圖像放大率。在具有雙遠(yuǎn)心的光學(xué)系統(tǒng)中,物體離近或遠(yuǎn)離鏡頭不會導(dǎo)致圖像變大或變小。此外,沿光軸方向具有深度范圍的對象不會出現(xiàn)傾斜。例如,圓柱的軸平行于光軸的圓柱物體在遠(yuǎn)心鏡頭的像平面中看起來是圓形的。在非遠(yuǎn)心鏡頭中,同一物體看起來頂部是橢圓形的,而不是圓形的,并且側(cè)面是可見的。值得一提的是,在具有雙遠(yuǎn)心的光學(xué)系統(tǒng)中,聚焦或故意散焦的圖像平面運(yùn)動不會改變圖像大小。雙遠(yuǎn)心鏡頭的另一個優(yōu)點(diǎn)是,它可以提供極其均勻的圖像平面照明。雙遠(yuǎn)心鏡頭在大多數(shù)情況下可以提供當(dāng)今市場上最低的失真水平(畸變),這大大的提高了它們提供可靠的視覺系統(tǒng)的能力。隨著當(dāng)今機(jī)器視覺系統(tǒng)的需求不斷增長,選擇正確的光學(xué)組件比以往任何時候都更加重要。光學(xué)系統(tǒng)是調(diào)節(jié)圖像以進(jìn)行分析的關(guān)鍵部分,因此不應(yīng)忽視。每當(dāng)需要進(jìn)行關(guān)鍵測量時,都需要考慮使用雙遠(yuǎn)心鏡頭來產(chǎn)生能夠真正提供所需結(jié)果的系統(tǒng)?!緛碓矗汗饣⒁曈X內(nèi)部培訓(xùn)資料】
像方遠(yuǎn)心、物方遠(yuǎn)心、雙遠(yuǎn)心鏡頭的區(qū)別
像方遠(yuǎn)心、物方遠(yuǎn)心、雙遠(yuǎn)心鏡頭的區(qū)別 工業(yè)鏡頭是機(jī)器視覺系統(tǒng)中十分重要的成像元件,系統(tǒng)若想完全發(fā)揮其作用,工業(yè)鏡頭必須能夠滿足要求才行。隨著機(jī)器視覺系統(tǒng)在精密測量領(lǐng)域的廣泛應(yīng)用,普通工業(yè)鏡頭難以滿足要求,而遠(yuǎn)心鏡頭應(yīng)運(yùn)而生。 遠(yuǎn)心鏡頭主要為矯正傳統(tǒng)工業(yè)鏡頭視差而設(shè)計,它可以在一定的物距范圍內(nèi),使得到的圖像放大倍率不變,從而彌補(bǔ)普通工業(yè)鏡頭“遠(yuǎn)大近小”的視覺效果,滿足精密測量的要求。遠(yuǎn)心鏡頭按設(shè)計原理可分為:像方遠(yuǎn)心光路、物方遠(yuǎn)心光路和雙側(cè)遠(yuǎn)心光路。 --------------光路原理 1)像方遠(yuǎn)心光路 像方遠(yuǎn)心光路的光路圖下圖。它是將孔徑光闌放置在物方焦平面上,像方主光線平行于光軸主光線的會聚中心位于像方無窮遠(yuǎn)。這種鏡頭的特點(diǎn)是放大倍率與像距無關(guān),可以消除像方調(diào)焦不準(zhǔn)引入的測量誤差。 2)物方遠(yuǎn)心光路 物方遠(yuǎn)心光路的光路圖如下圖。它是將孔徑光闌放置在光學(xué)系統(tǒng)的像方焦平面上,物方主光線平行于光軸主光線的會聚中心位于物方無限遠(yuǎn)。這種鏡頭的特點(diǎn)是在合理的活動范圍內(nèi),物體的放大倍率與物距無關(guān)。即使物距發(fā)生改變,像高也并不會發(fā)生改變,即測得的物體尺寸不會變化。根據(jù)這個原理設(shè)計出來的鏡頭成為物方遠(yuǎn)心鏡頭,簡稱遠(yuǎn)心鏡頭。 3)雙側(cè)遠(yuǎn)心光路 雙側(cè)遠(yuǎn)心光路就是我們常說的雙遠(yuǎn)心光路,光路圖如下圖。它綜合了像方遠(yuǎn)心和物方遠(yuǎn)心的雙重優(yōu)點(diǎn),在景深范圍內(nèi),物體離得遠(yuǎn)近或者相機(jī)離得遠(yuǎn)近,都不會影響到成像系統(tǒng)的放大倍數(shù),即像不隨物距和相距的變化而變化。根據(jù)雙側(cè)遠(yuǎn)心光路設(shè)計出來的鏡頭成為雙遠(yuǎn)心鏡頭。 鏡頭原型 正所謂“弱水三千,只取一瓢飲”。在遠(yuǎn)心鏡頭選型過程中,需要我們根據(jù)實(shí)際情況,從百萬只鏡頭中,挑選出最適合我們的那一個。在了解了遠(yuǎn)心鏡頭的光路原理之后,讓我們來康康鏡頭參數(shù)的含義吧!(1)物方遠(yuǎn)心鏡頭 前面提到,物方遠(yuǎn)心鏡頭簡稱為遠(yuǎn)心鏡頭。遠(yuǎn)心鏡頭常用參數(shù)包括倍率、工作距離、物方分辨率、景深、數(shù)值孔徑NA等。在眾多參數(shù)中,可能會讓大家困惑的參數(shù),應(yīng)該是數(shù)值孔徑NA了吧。 遠(yuǎn)心鏡頭中提到的數(shù)值孔徑NA指像方數(shù)值孔徑,數(shù)值孔徑NA值越大,鏡頭分辨率和亮度越佳。數(shù)值孔徑NA與物方分辨率的對應(yīng)關(guān)系為: 物方分辨率=,λ為測試光波長。一般遠(yuǎn)心鏡頭參數(shù)中,也會給出鏡頭可匹配的像元大小。如果參數(shù)中并沒有給出鏡頭的良配怎么辦呢?不慌,不慌,一個公式解決煩惱:匹配相機(jī)像元尺寸=物方分辨率*鏡頭倍率。 (2)雙遠(yuǎn)心鏡頭 雙遠(yuǎn)心鏡頭常用參數(shù)相對于遠(yuǎn)心鏡頭來說更容易理解。它包括倍率、物方分辨率、工作距離、景深、遠(yuǎn)心度等。在這些參數(shù)中,各參數(shù)的對應(yīng)關(guān)系與遠(yuǎn)心鏡頭的對應(yīng)關(guān)系相一致。需要特別解釋一下的,應(yīng)該只有遠(yuǎn)心度了。它是評價遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭好壞的重要參數(shù)之一。 遠(yuǎn)心度是指主光線偏離光軸的角度。角度越小,遠(yuǎn)心度越好,鏡頭的倍率誤差越小。在測量過程中的表現(xiàn)為:在景深范圍內(nèi),保證不同工作距下,物體的放大率是一樣的。它是彌補(bǔ)普通工業(yè)鏡頭“遠(yuǎn)大近小”這一弊端的重要因素。 -------------雙遠(yuǎn)心鏡頭優(yōu)勢遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭常用于精密測量領(lǐng)域。在解釋完他們的光路原理和參數(shù)意義后,大家有沒有困惑,遠(yuǎn)心鏡頭和雙遠(yuǎn)心鏡頭在景深范圍內(nèi),工作距離都不會影響成像倍率,且畸變值都很小。那在選型過程中,如何取舍呢?雙遠(yuǎn)心鏡頭當(dāng)然是靠實(shí)力取勝啦。 雙遠(yuǎn)心鏡頭相對于遠(yuǎn)心鏡頭景深更大。當(dāng)其他參數(shù)相同的情況下,雙遠(yuǎn)心鏡頭的工作范圍比遠(yuǎn)心鏡頭的工作范圍要大,可觀測的范圍更廣。當(dāng)我們需要觀測的物體高度差比較大時,可以優(yōu)先考慮雙遠(yuǎn)心鏡頭。 雙遠(yuǎn)心鏡頭相對于遠(yuǎn)心鏡頭遠(yuǎn)心度也更高。在精密測量的選型過程中,如果對觀測物體精度要求很高時,雙遠(yuǎn)心鏡頭會是一個更好的選擇。 >>光虎光電科技(天津)有限公司<< >>公司網(wǎng)址:www.sc2starcraft.cn<<
3D無序抓取
什么是3D無序抓???3D無序抓取就是利用3D成像系統(tǒng)對工件表面進(jìn)行感知和分析,計算得到物體的實(shí)時空間坐標(biāo)和姿態(tài),無需示教即可無縫驅(qū)動機(jī)械臂可被廣泛應(yīng)用于料框堆疊工件的識別/無序抓取等多種需求。針對料框中散亂工件的上下料技術(shù)難點(diǎn)及機(jī)器代替人工的趨勢,3D視覺引導(dǎo)定位機(jī)器人無序抓取系統(tǒng)解決方案采用3D相機(jī)進(jìn)行三維數(shù)據(jù)的采集、匹配、識別,并將最合適抓取工件的坐標(biāo)轉(zhuǎn)換為機(jī)器人坐標(biāo),機(jī)器人根據(jù)限定條件進(jìn)行最優(yōu)路徑規(guī)劃完成散亂工件的抓取,最終實(shí)現(xiàn)無序抓取的整個流程。為什么要使用3D無序抓???在工業(yè)上,機(jī)器人完成重復(fù)性工作已經(jīng)很常見了,但是無序的應(yīng)用環(huán)境則要復(fù)雜得多。這就意味著機(jī)器人無法依靠設(shè)定好的程序繼續(xù)執(zhí)行工作,而是需要對環(huán)境進(jìn)行感知、分析,從而再做出判斷。在沒有應(yīng)用3D視覺之前,雜亂無章的工作任務(wù)通常是用傳統(tǒng)的工裝實(shí)現(xiàn)定位的。這種方式無法滿足不同產(chǎn)品使用一個工裝定位的問題。隨著電子行業(yè)的興起,工業(yè)生產(chǎn)中無序類的應(yīng)用需求越來越多。為了解決這個問題,3D視覺就成為了最佳的選擇。專門針對散亂堆放的工件設(shè)計,來高效地完成3D智能抓取,來替代傳統(tǒng)的工裝夾具。3D無序抓取在實(shí)際工業(yè)中的使用使用3D無序抓取命令,可以做到:檢測任何物體的每個位置和形狀;在盒子中檢測未分類的零件,用機(jī)器人將他們撿起來并送入生產(chǎn)機(jī)器;將盒子中每個檢測到的零件的位置發(fā)送給機(jī)器人。通過3D匹配,可以只用1個3D傳感器來配置之前的任何對象的形狀和位置。因此,可以用來無序抓取復(fù)雜形狀的零件。在這些方向上3D無序抓取也得到了應(yīng)用:>> 多品種工件的機(jī)器人3D定位抓取上料>> 料框堆疊物體3D識別定位>> 復(fù)雜多面工件的柔性化3D定位抓取>> 大型物體3D定位抓取>> 工件的無序來料3D定位>> 多工序間機(jī)器人協(xié)作3D定位抓取>> 輸送帶上物體的快速3D定位抓取>> 噴涂機(jī)器人來料3D識別定位>> 大型設(shè)備的機(jī)器人裝配3D定位3D無序抓取現(xiàn)狀及未來發(fā)展從生產(chǎn)和環(huán)境適應(yīng)性的角度來講,未來幾年的發(fā)展方向?qū)?D視覺有著更廣泛的需求。這要求3D相機(jī)能夠通過對工件3D數(shù)據(jù)的掃描,幫助機(jī)器人快速準(zhǔn)確的找到被測零件并確認(rèn)其位置,引導(dǎo)機(jī)械手準(zhǔn)確抓取定位工件,從而實(shí)現(xiàn)工業(yè)機(jī)器人自動化生產(chǎn)線的柔性工裝。而在應(yīng)用拓展方面,除了智能抓取,當(dāng)前,機(jī)器人3D視覺在自動化焊接、自動化切割、自動化裝配、自動化碼垛等方面也有廣泛應(yīng)用。【來源:光虎視覺內(nèi)部培訓(xùn)資料】